Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.478
Filtrar
1.
Oncol Lett ; 27(5): 212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572063

RESUMO

Trefoil factor family member 2 (Tff2) is significantly involved in intestinal tumor growth in ApcMin/+ mice, which can be used as a human colon cancer model. TFF2, which encodes TFF2 (spasmolytic protein 1) is highly expressed in human cancer tissues, including the pancreas, colon and bile ducts, as well as in normal gastric and duodenum tissues. By contrast, TFF2 exhibits low expression levels in other normal tissues, including the small and large intestine. Furthermore, TFF2 expression has not been detected in DLD-1 cells, a cell line derived from human colon cancer. What induces TFF2 expression in normal and tumor cells is still unknown. Highly malignant tumor tissues are characterized by higher temperatures and lower pH (6.2-6.9) than in normal tissues, where normal pH ranges from 7.2 to 7.4. This microenvironment exacerbates malignancy by promoting the acquisition of cell death resistance, drug resistance and immune escape. Therefore, the present study examined how TFF2 expression is affected in cultured cells that imitate the tumor tissue microenvironment. The incubation temperature was increased from 37 to 40°C, but no expression of TFF2 was induced. Subsequently, a culture solution with an acidic pH was prepared to simulate the Warburg effect in tumors. TFF2 expression was increased by 42.8- and 5.8-fold in cells cultured in acidic medium at pH 6.5 and 6.8 compared with at pH 7.4, respectively, as determined using the relative quantification method following quantitative polymerase chain reaction. The present study also analyzed fluctuations in the expression levels of genes other than TFF2, under acidic conditions. Acidic conditions upregulated the expression of genes related to cell membranes and glycoproteins, based on the Database for Annotation, Visualization, and Integrated Discovery. In conclusion, TFF2 was highly expressed under acidic conditions, implying that it may have an important function in protecting the plasma membrane from acidic environments in both normal and cancer cells. These findings warrant further investigation of TFF2 as a target of cancer therapy and diagnosis.

2.
Anim Biosci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575124

RESUMO

Objective: Although pork loins is not a tough meat, they need to develop for meat products with a soft texture for the elderly. This study focused on the physicochemical properties and tenderness characteristics of pork loin injected with green kiwifruit juice (GRJ) and gold kiwifruit juice (GOJ) during various incubation times. In addition, the antioxidant activities of hydrolysate derived from the hydrolysis of pork loin by kiwifruit juice protease were evaluated. Methods: The pork loin was injected with 10% and 20% GRJ and GOJ, under various incubation times (0, 4, 8, and 24 h). Then, the physicochemical properties and tenderness of pork loins. 2,2- diphenyl-1-picrylhydrazyl (DPPH) and reducing power were conducted to determine hydrolysate's antioxidant activities derived from pork loin's hydrolysis by kiwifruit juice protease. Results: GRJ had greater tenderizing ability than GOJ, even at the 10% addition. When kiwifruit juice was injected into pork loin, the tenderness increased with increasing incubation time. This was confirmed by the decrease in intensity of the myosin heavy chain (MHC) band in SDS-PAGE. In particular, the MHC band decreased at 8 h for both 10% GRJ and 20% GOJ and at 4 h for 20% GRJ alone. The highest myofibril fragmentation index and peptide solubility were observed in pork loin treated with 20% GRJ compared to the other treatments during incubation. The 10% GRJ and 20% GOJ treatments showed similar levels of antioxidant activity of the protein hydrolysates in pork loin, and 20% GRJ showed the highest activity among the treatments. Conclusion: Kiwifruit juice had protease activity, and GRJ was more useful for the tenderness of meat products than GOJ. Thus, GRJ at 10% could be a potential agent to tenderize and enrich the natural antioxidant activity through the proteolysis of pork loin.

3.
Sci Total Environ ; 928: 172288, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599394

RESUMO

Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential "solution" in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious "core" of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders.

4.
Front Zool ; 21(1): 12, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632631

RESUMO

BACKGROUND: Energy and time allocation in seabirds differ between consecutive stages of breeding given various requirements of particular phases of the reproductive period. Theses allocations may also be sex-specific considering differential energetic or nutritional requirements of males and females and/or sexual segregation in foraging niches and/or areas. In this study we investigated the foraging ecology of an Arctic, zooplanktivorous seabird, the little auk Alle alle during the pre-laying period using remote sensing of the environment and GPS-TDR loggers deployed on birds. We compared foraging trips range and habitats of birds with other stages of the breeding period and between sexes. RESULTS: We found that little auks during the pre-laying period foraged exclusively in cold sea surface temperature zones (with temperatures < 5 ºC) but in various sea depth zones. They dived to similar depths ranging from -4.0 to -10.9 m, exploring various thermal microhabitats (with mean temperatures values ranging from 2.2 °C in Shelf sea depth zone to 5.9 °C in Deep sea depth zone). The majority of foraging trips and dives characteristics were similar to subsequent phases of breeding. However, home ranges during the pre-laying trips were wider compared to the incubation period. As expected, females exhibited wider foraging niches compared to males (wider range of sea surface temperature and sea depth in foraging locations), which could be explained by sex specific energetic and/or nutritional requirements (females producing an egg). We also delineated local foraging areas important for little auks during their whole breeding season. Protection of these areas is crucial for sustaining the local marine biodiversity. CONCLUSIONS: We found that little auks females during the pre-laying period explored wider foraging niches compared to males. These differences may be attributed to sex-specific nutritional or/and energetical constraints at this stage of breeding. The results of this study also emphasize the importance of shelf Arctic-type water masses as the foraging areas for little auks during successive stages of breeding.

5.
Front Microbiol ; 15: 1357822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633701

RESUMO

SAR202 bacteria are abundant in the marine environment and they have been suggested to contribute to the utilization of recalcitrant organic matter (RDOM) within the ocean's biogeochemical cycle. However, this functional role has only been postulated by metagenomic studies. During a one-year microcosm incubation of an open ocean microbial community with lysed Synechococcus and its released DOM, SAR202 became relatively more abundant in the later stage (after day 30) of the incubation. Network analysis illustrated a high degree of negative associations between SAR202 and a unique group of molecular formulae (MFs) in phase 2 (day 30 to 364) of the incubation, which is empirical evidence that SAR202 bacteria are major consumers of the more oxygenated, unsaturated, and higher-molecular-weight MFs. Further investigation of the SAR202-associated MFs suggested that they were potentially secondary products arising from initial heterotrophic activities following the amendment of labile Synechococcus-derived DOM. This pilot study provided a preliminary observation on the correspondence between SAR202 bacteria and more resistant DOM, further supporting the hypothesis that SAR202 bacteria play important roles in the degradation of RDOM and thus the ocean's biogeochemical cycle.

6.
Ecotoxicol Environ Saf ; 276: 116304, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626606

RESUMO

Short-chain chlorinated paraffins (SCCPs) are listed as a category of globally controlled persistent organic pollutants (POPs) by the Stockholm Convention in 2017. However, SCCP toxicity, particularly their developmental toxicity in avian embryos, has not been well studied. In this study, we observed the early development of chicken embryos (Gallus gallus domesticus) by applying a shell-less (ex-ovo) incubation system developed in our previous studies. After exposing embryos at Hamburger Hamilton stage (HHS) 1 to SCCPs (control, 0.1% DMSO; SCCPs-L, 200 ng/g; SCCPs-M, 2000 ng/g; SCCPs-H, 20,000 ng/g), we observed the development of embryos from the 3rd to 9th incubation day. Exposure to SCCPs-M and -H induced a significant reduction in survival, with an LD50 of 3100 ng/g on the 9th incubation day. Significant dose-dependent decreases in body length were observed from days 4-9. We also found that SCCPs-H decreased the blood vessel length and branch number on the 4th incubation day. Additionally, SCCPs-H significantly reduced the heart rate on the 4th and 5th incubation days. These findings suggest that SCCPs may have potential of developmental and cardiovascular toxicity during the early stages of chicken embryos. Quantitative PCR of the mRNA of genes related to embryonic development showed that SLC16A10 (a triiodothyronine transporter) level decreased in the SCCPs-H group, showing a significant positive correlation with the body length of embryos. THRA level, a thyroid hormone receptor, was significantly decreased in the SCCPs-H group, whereas that of DIO3 level, a deiodinase was significantly increased. These results suggest that SCCPs exposure induces developmental delays via the thyroxine signaling pathway. Analysis of thyroid hormones (THs) in blood plasma also indicated a significant reduction in thyroxine (T4) levels in the SCCPs-H group on the 9th incubation day of embryos. In conclusion, SCCPs induce developmental toxicity by disrupting thyroid functions at the early-life stage of chicken embryos.

7.
Heliyon ; 10(6): e27849, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524553

RESUMO

Objective: To assess whether 48-h negative blood culture (BC) bottles are still negative at the classic 120-h incubation endpoint and whether 48 h might be the time to make antimicrobial therapy decisions. Methods: Data from the first collected bottles from bloodstream infection (BSI) episodes of single patients were retrospectively analyzed. Probabilities of bottles being negative at the classic endpoint were calculated from 0 to 120 h of incubation. Results: Among BC-negative episodes (4018/4901 [82.0%]), most (2097/4018 (52.2%) occurred in medicine patients. At 48 h, probability was 100.0% (95% CI, 99.9-100.0) for all 4018 patients. Of these, 1244 (31.0%) patients remained on antibiotics until 120 h. Excluding 401 (32.2%) patients who received antibiotics for another (non-bloodstream) infection, 843 (67.8%) of 1244 patients could have merited early (48-h) discontinuation of antibiotics. Stopping treatment in these patients would have led to saving 5201 days of access (943 [18.1%] days), watch (3624 [69.7%] days), or reserve (634 [12.2%]) AWaRe groups' antibiotics, which correspond to 65.6% (5201/7928) of days of administered antibiotics in all 1244 patients. Conclusion: As an early indicator of BC negativity, the 48-h endpoint could reliably support antimicrobial stewardship, but the clinical judgment remains imperative especially when BSI is highly suspected.

8.
Sci Rep ; 14(1): 7012, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528139

RESUMO

Biochar is increasingly recognized for its ability to enhance hydro-physical properties of soil, offering promising solutions for improving soil structure, water retention, and overall agricultural productivity. In this study, sandy loam soil was amended at different rates (0, 15, 30, and 60 t ha-1) of biochar produced from olive pomace (Jift) at different pyrolysis temperatures (300, 400, 500, and 600 °C), and incubated for 30, 60, and 90 days. The biochar-amended soils were collected for analysis after each incubation period for infiltration rate, aggregate stability, soil water retention, water repellency, and penetration resistance. At 300 °C, aggregate stability increased with biochar amendments; the highest value (65%) was after 60 days of incubation. At other pyrolysis temperatures, aggregate stability decreased, or no effect of temperature was observed. Also, at 300 °C, the infiltration rate was decreased with biochar application and the lowest value of (0.14 ml/min) was at 90 days of incubation. At other pyrolysis temperatures, the infiltration rate was increased with increased biochar application rate. Water retention was increased with biochar application at 300 °C; however, biochar application did not affect water retention at other pyrolysis temperatures. These results strongly suggest the improvement of soil physical and hydraulic properties following the addition of biochar amendment. Overall, biochar had positive effects on hydro-physical properties. The biochar produced at 300 °C pyrolysis temperature was the most beneficial to agriculturally relevant hydraulic conditions. However, field assessments are necessary to evaluate the long-term effects of biochar on hydro-physical properties.


Assuntos
Areia , Solo , Solo/química , Temperatura , Pirólise , Carvão Vegetal/química , Água
9.
BMC Genomics ; 25(1): 309, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528494

RESUMO

BACKGROUND: Incubation behaviour, an instinct for natural breeding in poultry, is strictly controlled by the central nervous system and multiple neuroendocrine hormones and neurotransmitters, and is closely associated with the cessation of egg laying. Therefore, it is essential for the commercial poultry industry to clarify the molecular regulation mechanism of incubation behaviour. Here, we used high-throughput sequencing technology to examine the pituitary transcriptome of Changshun green-shell laying hen, a local breed from Guizhou province, China, with strong broodiness, in two reproductive stages, including egg-laying phase (LP) and incubation phase (BP). We also analyze the differences in gene expression during the transition from egg-laying to incubation, and identify critical pathways and candidate genes involved in controlling the incubation behaviour in the pituitary. RESULTS: In this study, we demonstrated that a total of 2089 differently expressed genes (DEGs) were identified in the pituitary, including 842 up-regulated and 1247 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that steroid biosynthesis pathway and neuroactive ligand-receptor interaction were significantly enriched based on DEGs commonly identified in pituitary. Further analysis revealed that SRC, ITGB4, ITGB3, PIK3R3 and DRD2 may play crucial roles in the regulation of incubation behaviour. CONCLUSIONS: We identified 2089 DEGs and the key signaling pathways which may be closely correlated with incubation in Changshun green-shell laying hens, and clarified the molecular regulation mechanism of incubation behaviour. Our results indicate the complexity and variety of differences in reproductive behaviour of different chicken breeds.


Assuntos
Galinhas , Transcriptoma , Animais , Feminino , Galinhas/metabolismo , Perfilação da Expressão Gênica , Hipófise/metabolismo , Hormônios/metabolismo
10.
Anal Bioanal Chem ; 416(10): 2541-2551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451277

RESUMO

In this study, an online electrochemistry coupling high-performance liquid chromatography-mass spectrometry (EC-HPLC-MS) technology has been developed for simulating metabolic reactions and rapid analysis of metabolites of flavone, quercetin, and rutin, which are not only widely present compounds with pharmacological activity in nature, but also have structural similarity and variability. The simulated metabolic processes of the substrates (phase I and phase II metabolism) were implemented on the surface of glassy carbon electrode (GCE) by using different electrochemical methods. After online chromatographic separation, the products were transmitted to a mass spectrometer for detection, in order to speculate relevant reaction pathways and structural information of the reaction product. The main metabolites, including methylation, hydroxylation, hydrolysis, and conjugation reaction products, had been successfully identified through the designed in situ hyphenated technique. Furthermore, compared with metabolites produced by in vitro incubation of rat liver microsomes, it was found that the products of electrochemical simulated metabolism were more abundant with diverse metabolic pathways. The results indicated that the proposed method exhibited advantages in the sample pretreatment process and detection cycle without compromising the reliability and accuracy of the results.


Assuntos
Flavonoides , 60705 , Animais , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Eletroquímica , Flavonoides/metabolismo , Microssomos Hepáticos/metabolismo , Oxirredução , Reprodutibilidade dos Testes
11.
BMC Infect Dis ; 24(1): 294, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448822

RESUMO

BACKGROUND: The latent and incubation periods characterize the transmission of infectious viruses and are the basis for the development of outbreak prevention and control strategies. However, systematic studies on the latent period and associated factors with the incubation period for SAS-CoV-2 variants are still lacking. We inferred the two durations of Delta, BA.1, and BA.2 cases and analyzed the associated factors. METHODS: The Delta, BA.1, and BA.2 (and its lineages BA.2.2 and BA.2.76) cases with clear transmission chains and infectors from 10 local SAS-CoV-2 epidemics in China were enrolled. The latent and incubation periods were fitted by the Gamma distribution, and associated factors were analyzed using the accelerated failure time model. RESULTS: The mean latent period for 672 Delta, 208 BA.1, and 677 BA.2 cases was 4.40 (95%CI: 4.24 ~ 4.63), 2.50 (95%CI: 2.27 ~ 2.76), and 2.58 (95%CI: 2.48 ~ 2.69) days, respectively, with 85.65% (95%CI: 83.40 ~ 87.77%), 97.80% (95%CI: 96.35 ~ 98.89%), and 98.87% (95%CI: 98.40 ~ 99.27%) of them starting to shed viruses within 7 days after exposure. In 405 Delta, 75 BA.1, and 345 BA.2 symptomatic cases, the mean latent period was 0.76, 1.07, and 0.79 days shorter than the mean incubation period [5.04 (95%CI: 4.83 ~ 5.33), 3.42 (95%CI: 3.00 ~ 3.89), and 3.39 (95%CI: 3.24 ~ 3.55) days], respectively. No significant difference was observed in the two durations between BA.1 and BA.2 cases. After controlling for the sex, clinical severity, vaccination history, number of infectors, the length of exposure window and shedding window, the latent period [Delta: exp(ß) = 0.81, 95%CI: 0.66 ~ 0.98, p = 0.034; Omicron: exp(ß) = 0.82, 95%CI: 0.71 ~ 0.94, p = 0.004] and incubation period [Delta: exp(ß) = 0.69, 95%CI: 0.55 ~ 0.86, p < 0.001; Omicron: exp(ß) = 0.83, 95%CI: 0.72 ~ 0.96, p = 0.013] were significantly shorter in 18 ~ 49 years but did not change significantly in ≥ 50 years compared with 0 ~ 17 years. CONCLUSION: Pre-symptomatic transmission can occur in Delta, BA.1, and BA.2 cases. The latent and incubation periods between BA.1 and BA.2 were similar but shorter compared with Delta. Age may be associated with the latent and incubation periods of SARS-CoV-2.


Assuntos
Epidemias , Período de Incubação de Doenças Infecciosas , Humanos , Estudos Transversais , China/epidemiologia , Surtos de Doenças
12.
Sci Total Environ ; 926: 171971, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547992

RESUMO

Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.


Assuntos
Ecossistema , Oxigênio , Biomassa , Oceanos e Mares , Temperatura , Fitoplâncton/fisiologia
13.
Parasit Vectors ; 17(1): 134, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491547

RESUMO

BACKGROUND: The global temperature has significantly risen in the past century. Studies have indicated that higher temperature intensifies malaria transmission in tropical and temperate countries. Temperature fluctuations will have a potential impact on parasite development in the vector Anopheles mosquito. METHODS: Year-long microclimate temperatures were recorded from a malaria-endemic area, Chennai, India, from September 2021 to August 2022. HOBO data loggers were placed in different vector resting sites including indoor and outdoor roof types. Downloaded temperatures were categorised by season, and the mean temperature was compared with data from the same study area recorded from November 2012 to October 2013. The extrinsic incubation period for Plasmodium falciparum and P. vivax was calculated from longitudinal temperatures recorded during both periods. Vector surveillance was also carried out in the area during the summer season. RESULTS: In general, temperature and daily temperature range (DTR) have increased significantly compared to the 2012-2013 data, especially the DTR of indoor asbestos structures, from 4.30 â„ƒ to 12.62 â„ƒ in 2021-2022, unlike the marginal increase observed in thatched and concrete structures. Likewise, the average DTR of outdoor asbestos structures increased from 5.02 â„ƒ (2012-2013) to 8.76 â„ƒ (2021-2022) although the increase was marginal in thatched structures and, surprisingly, showed no such changes in concrete structures. The key finding of the extrinsic incubation period (EIP) is that a decreasing trend was observed in 2021-2022 compared to 2012-2013, mainly in indoor asbestos structures from 7.01 to 6.35 days, which negatively correlated with the current observation of an increase in temperature. Vector surveillance undertaken in the summer season revealed the presence of Anopheles breeding in various habitats. Anopheles stephensi could be collected using CDC light traps along with other mosquito species. CONCLUSION: The microclimate temperature has increased significantly over the years, and mosquitoes are gradually adapting to this rising temperature. Temperature negatively correlates with the extrinsic incubation period of the parasite. As the temperature increases, the development of the parasite in An. stephensi will be faster because of a decrease in EIP, thus requiring relatively fewer days, posing a risk for disease transmission and a hindrance to malaria elimination efforts.


Assuntos
Anopheles , Amianto , Malária Vivax , Malária , Parasitos , Animais , Temperatura , Mudança Climática , Biodiversidade , Período de Incubação de Doenças Infecciosas , Índia/epidemiologia , Malária Vivax/parasitologia , Mosquitos Vetores/parasitologia , Anopheles/parasitologia
14.
Proc Natl Acad Sci U S A ; 121(11): e2313842121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437541

RESUMO

Soil organic carbon (SOC) mineralization is a key component of the global carbon cycle. Its temperature sensitivity Q10 (which is defined as the factor of change in mineralization with a 10 °C temperature increase) is crucial for understanding the carbon cycle-climate change feedback but remains uncertain. Here, we demonstrate the universal control of carbon quality-availability tradeoffs on Q10. When carbon availability is not limited, Q10 is controlled by carbon quality; otherwise, substrate availability controls Q10. A model driven by such quality-availability tradeoffs explains 97% of the spatiotemporal variability of Q10 in incubations of soils across the globe and predicts a global Q10 of 2.1 ± 0.4 (mean ± one SD) with higher Q10 in northern high-latitude regions. We further reveal that global Q10 is predominantly governed by the mineralization of high-quality carbon. The work provides a foundation for predicting SOC dynamics under climate and land use changes which may alter soil carbon quality and availability.

15.
Sci Rep ; 14(1): 6533, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503773

RESUMO

Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.


Assuntos
Compostos de Amônio , Poluentes do Solo , Solo/química , Fósforo , Areia , Argila , Nitratos , Nitrogênio , Carvão Vegetal/química , Poluentes do Solo/análise
16.
Water Environ Res ; 96(3): e11008, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443318

RESUMO

In aquatic ecosystems, plastic litter is a substrate for biofilms. Biofilms on plastic and natural surfaces share similar composition and activity, with some differences due to factors such as porosity. In freshwaters, most studies have examined biofilms on benthic substrates, while little research has compared the activity and composition of biofilms on buoyant plastic and natural surfaces. Additionally, the influence of substrate size and successional stage on biofilm composition has not been commonly assessed. We incubated three plastics of distinct textures that are buoyant in rivers, low-density polyethylene (rigid; 1.7 mm thick), low-density polyethylene film (flexible; 0.0254 mm thick), and foamed polystyrene (brittle; 6.5 mm thick), as well as wood substrates (untreated oak veneer; 0.6 mm thick) in the Chicago River. Each material was incubated at three sizes (1, 7.5, and 15 cm2 ). Substrates were incubated at 2-10 cm depths and removed weekly for 6 weeks. On each substrate we measured chlorophyll concentration, biofilm biomass, respiration, and flux of nitrogen gas. We sequenced 16S and 23S rRNA genes at Weeks 1, 3, and 6 to capture biofilm community composition across successional stages. Chlorophyll, biomass, and N2 flux were similar across substrates, but respiration was greater on wood than plastics. Bacterial and algal richness and diversity were highest on foam and wood compared to polyethylene substrates. Bacterial biofilm community composition was distinct between wood and plastic substrates, while the algal community was distinct on wood and foam, which were different from each other and polyethylene substrates. These results indicate that polymer properties influence biofilm alpha and beta diversity, which may affect transport and distribution of plastic pollution and associated microbes, as well as biogeochemical processes in urban rivers. This study provides valuable insights into the effects of substrate on biofilm characteristics, and the ecological impacts of plastic pollution on urban rivers. PRACTITIONER POINTS: Plastic physical and chemical properties act as forces of selection for biofilm. Biofilm activity was similar among three different types of plastic. Community composition between plastic and wood was different.


Assuntos
Polietileno , Rios , Ecossistema , Biofilmes , Clorofila
17.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474754

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing healthcare problem with limited therapeutic options. Progress in this field depends on the availability of reliable preclinical models. Human precision-cut liver slices (PCLSs) have been employed to replicate the initiation of MASLD, but a comprehensive investigation into MASLD progression is still missing. This study aimed to extend the current incubation time of human PCLSs to examine different stages in MASLD. Healthy human PCLSs were cultured for up to 96 h in a medium enriched with high sugar, high insulin, and high fatty acids to induce MASLD. PCLSs displayed hepatic steatosis, characterized by accumulated intracellular fat. The development of hepatic steatosis appeared to involve a time-dependent impact on lipid metabolism, with an initial increase in fatty acid uptake and storage, and a subsequent down-regulation of lipid oxidation and secretion. PCLSs also demonstrated liver inflammation, including increased pro-inflammatory gene expression and cytokine production. Additionally, liver fibrosis was also observed through the elevated production of pro-collagen 1a1 and tissue inhibitor of metalloproteinase-1 (TIMP1). RNA sequencing showed that the tumor necrosis factor alpha (TNFα) signaling pathway and transforming growth factor beta (TGFß) signaling pathway were consistently activated, potentially contributing to the development of inflammation and fibrosis. In conclusion, the prolonged incubation of human PCLSs can establish a robust ex vivo model for MASLD, facilitating the identification and evaluation of potential therapeutic interventions.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Humanos , Avaliação Pré-Clínica de Medicamentos , Inibidor Tecidual de Metaloproteinase-1 , Inflamação
18.
Int J Parasitol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447815

RESUMO

Dirofilaria immitis is the causative agent of canine heartworm disease. We used the established heartworm development unit (HDU) principle to map the extrinsic incubation period (EIP) of D. immitis in Australia using historical weather data from 2013-2022. We found weather conditions suitable for EIP completion showed substantial seasonality and geographical variability. Whilst a considerable percentage of the Australian territory showed suitable weather conditions to always support EIP completion (17%), only 2.7% of the 2021 Australian human population lived in this region. Therefore, 97% of the population lived in an area that changed its EIP suitability within the study period. EIP completion is required prior to D. immitis transmission, meaning that infection risk of D. immitis is seasonal and location-dependent, being disrupted each year for most of the human population's dogs. We developed an online, open access tool allowing us to visualise EIP completion across Australia historically and in near real-time. We aim to support veterinarians to make risk-based recommendations for dirofilariosis prevention by using the tool, available at https://heartworm-mapping.adelaide.edu.au/shiny/.

19.
Prog Neurobiol ; 234: 102573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401668

RESUMO

Cue-induced cocaine craving gradually intensifies following abstinence, a phenomenon known as the incubation of drug craving. Neuronal ensembles activated by initial cocaine use, are critically involved in this process. However, the mechanisms by which neuronal changes occurring in the ensembles after withdrawal contribute to incubation remain largely unknown. Here we labeled neuronal ensembles in the shell of nucleus accumbens (NAcSh) activated by cocaine conditioned place preference (CPP) training. NAcSh ensembles showed an increasing activity induced by CPP test after 21-day withdrawal. Inhibiting synaptic transmission of NAcSh ensembles suppressed the preference for cocaine paired-side after 21-day withdrawal, demonstrating a critical role of NAcSh ensembles in increased preference for cocaine. The density of dendritic spines in dopamine D1 receptor expressing ensembles was increased after 21-day withdrawal. Moreover, the expression of Grin1, a subunit of the N-methyl-D-aspartate (NMDA) receptor, specifically increased in the NAcSh ensembles after cocaine withdrawal in both CPP and self-administration (SA) mouse models. Targeted knockdown or dysfunction of Grin1 in NAcSh ensembles significantly suppressed craving for cocaine. Our results suggest that the accumulation of NMDA receptors in NAcSh ensembles mediates increased craving for cocaine after prolonged withdrawal, thereby providing potential molecular targets for treatment of drug addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Cocaína/farmacologia , Cocaína/metabolismo , Núcleo Accumbens/metabolismo
20.
Poult Sci ; 103(4): 103406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335664

RESUMO

Understanding the effect of crossbreeding on egg quality and incubation is essential for the selection of superior genetic combinations in breeding programs. This study evaluated the effect of crossbreeding on egg quality and incubation activities of the Sasso and Wassache chickens in a pure (Sasso X Sasso [SS]; Wassache X Wassache [WW]) and reciprocal cross (Wassache X Sasso [WS]; Sasso X Wassache [SW]) design. A total of 1431 eggs were incubated while 400 eggs were selected for egg quality. Fertility, hatchability, and hatching activities were expressed in percentage, while egg quality traits were determined. The crosses with Sasso hens laid similar (P > 0.05) but heavier (P < 0.05) eggs with higher (P < 0.05) egg components compared to the crosses with Wassache hens. The SS, SW, and WW genotypes recorded similar (P > 0.05) early embryonic mortality (EEM) and were lower (P < 0.05) compared to the WS genotype. Late embryonic mortality (LEM) between the reciprocal crosses and SS was similar (P > 0.05) and lower (P < 0.05) compared to the WW. The hatchability and hatchability of fertile eggs between the purebreds and the SW cross were comparable (P > 0.05), while those of the WS genotype was lower compared to the SS cross. Hatch duration in the crossbreds was shorter (P < 0.05) compared to the pure Sasso. Mortality between the SW and WW was similar (P > 0.05) while the WS cross recorded a higher (P < 0.05) mortality compared to the purebreds. Crossbreeding improved egg quality, reduced LEM, and accelerated crossbred hatching events. The SW cross is recommended for better performance.


Assuntos
Galinhas , Óvulo , Animais , Feminino , Galinhas/genética , Hibridização Genética , Fertilidade , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...